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Abstract

The TRAINS project is an effort to build a conversationally proficient planning assistant.
A key part of the project is the construction of the TRAINS system, which provides the
research platform for a wide range of issues in natural language understanding, mixed-
initiative planning systems, and representing and reasoning about time, actions and events.
Four years have now passed since the beginning of the project. Each year we have produced
a demonstration system that focused on a dialog that illustrates particular aspects of our
research. The commitment to building complete integrated systems is a significant overhead
on the research, but we feel it is essential to guarantee that the results constitute real
progress in the field. This paper describes the goals of the project, and our experience with
the effort so far.
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1 Introduction

The TRAINS project is a long-term effort to develop a system that can use English conver-
sation to interact with and assist humans in problem solving tasks. Viewed in one direction,
we are developing a natural language system that uses extensive common-sense knowledge
and reasoning. Viewed in the other direction we are developing a plan reasoning system
that can collaborate in a natural way with humans to solve problems. The particular ap-
plication involves an interactive planning assistant that helps a user construct and monitor
plans about a railroad freight system. We have completed the fourth year of the project,
building a prototype system at the end of each year. The development of each system was
driven by particular dialogues that were constructed by selecting and cleaning up excerpts
of actual spoken dialogues between two people solving problems in the TRAINS domain.
This paper describes our experience in the project so far, what problems we have faced
and how the system has evolved. It also gives an overview of the most recent version, the
TRAINS-93 system.

If the only goal were to construct a system that scheduled trains, then the work should be
evaluated by how well the system actually performs the task. But absolute performance in
a single domain is not our concern. Rather, the TRAINS system is a platform for supporting
research into general language processing and plan reasoning capabilities, and we have not
developed modules that use domain-specific techniques. Each component is based on general
principles and is specialized to TRAINS only by adding the appropriate domain and task
knowledge. As a result, most modules in the system handle a wider range of behavior than
evidenced by examples used in the demonstrations.

From the natural language viewpoint, our goal is to develop the technology for embed-
ded dialogue systems that perform a non-linguistic task involving significant reasoning. By
studying dialogue as part of a collaborative problem solving task, we can study the effects
of knowledge and reasoning on different dialogue phenomena. From the problem solving
~ viewpoint, the goal is to develop technologies for collaborative plan reasoning system in
which goals are discussed and plans are formed incrementally as the two agents interact.
This mode of reasoning has attracted little attention so far in the problem solving literature,
but is essential for effective human-computer collaboration. In fact, these two viewpoints
cannot be separated. In a dialogue, the participants need to plan to make sure that infor-
mation is communicated effectively. And in mixed-initiative planning, the agents require a
communication medium with the power and flexibility of natural language.

Our research has been strongly motivated by studying actual human performance. We
have collected over eight hours of human-human dialogue in the TRAINS domain, and have
used this data to gain insight into both how language is actually used, and how humans
collaborate to form plans. This type of analysis is crucial for identifying what problems
actually arise, and helps us avoid working on problems that might seem interesting in the
abstract, but do not occur in practice.

The paper describes the project in a top-down manner. Section 2 considers the issue of
choosing a domain, the crucial first step of the work. Section 3 then provides an abstract
characterization of the TRAINS system as a conversational agent. With this description
in hand, we then present two examples in Section 4, which provide an overview of the




system’s activity as it collaboratively defines and executes plans. We then proceed to
describe the TRAINS-93 system in more detail. Section 5 addresses global issues, namely
the overall system architecture and the knowledge representations used to communicate
between modules, and Section 6 gives a short description of each of the major components.
Section 7 addresses some related issues, including the TRAINS world simulator and two
projects that will contribute to future systems but do not presently play a role in the
TRAINS-93 system. Finally, Section 8 discusses the accomplishments of the project so far,
and describes some issues that are motivating our current work on the next TRAINS system.

2 Choosing the Task

Choosing an appropriate task and domain was one of the most crucial decisions early in
the project. It had to balance several factors that appear contradictory at first glance. On
one hand, the task had to be rich enough so that it would naturally lead to a wide range of
dialogue behavior. In order to study discourse structure and dialogue phenomena, it was
crucial that the task didn’t limit the forms of interaction. On the other hand, the task
had to be simple enough to allow the development of an effective reasoning system during
the life of the project. If we cannot hope to perform the task, then the system can never
be demonstrated, and the link between reasoning and dialogue cannot be systematically
studied. In addition, the task must be a natural one for a person that does not require
specialized training yet is not too simple. If the task requires significant training, then the
person may prefer to use a specialized sublanguage to communicate with the system rather
than natural language. If the task is too easy, then people will prefer to solve the problem
themselves rather than collaborating with the system.

We explored two other tasks before choosing the final one. The first was an automated
reference librarian {Allen et al., 1989]. In this scenario, a person was given an essay topic
and then was asked to interact with the "system” in order to find relevant books from the
library catalog. We performed experiments and found that this task produced a rich range
of dialogue and collaborative problem-solving behavior. The problem was that it was not
feasible to construct an reasoning system for this task. If it had been restricted to simple
information retrieval queries, then it might have been possible. But few of the dialogues
were of this sort. Rather, the conversants discussed general characteristics of the essay
content and developed sets of keywords for querying the catalogue based on their common-
sense knowledge about the world coupled with heuristics based on what makes an effective
keyword. The second task we explored was a robotics-control application, where a person
communicated with the system to monitor and control a model train layout [Martin et al.,
1990]. This task supported interesting problem solving behaviors, but did not support a
wide range of dialogue behavior. In particular, the tendency was for the person to issue a
series of commands to the system. As such, it did not provide adequate support for the
dialogue aspects of the project.

This led to the third task—the person and system interact to manage a railway trans-
portation system. Neither directly executes the actions in this domain. Rather, the actions
are performed by railroad engineers and factory and station supervisors. Dialogue is en-
couraged by giving the person and the system different responsibilities and knowledge. The
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Figure 1: A simple TrRAINs-world Map

person (henceforth called the manager) is given the goals that need to be achieved, but does
not have direct access to the world or complete knowledge about the actions that can be
performed. The system acts as the manager’s assistant. It knows what actions are possible,
and provides the communication link to the world. It interacts with the manager about all
aspects of this task using the natural language interface. The only information that they
initially share is a map of the current TRAINS scenario. Figure 1 shows a map of a small
scenario that has been used for much of the dialogue collection and as the scenario for the
TRAINS-93 system. The world consists of five cities, each of which contains a rail station
that contains engines and rail cars as indicated. Some cities also contain warehouses con-
taining goods (e.g., there are bananas at Avon and oranges at Corning), and factories (e.g.,
Elmira has an orange juice factory that converts oranges to orange juice). A very simple
goal in this scenario might be to get one boxcar of oranges to Bath by 8 AM, starting at
midnight. The plan might involve sending an engine from Elmira with a boxcar to Corning
to get some oranges, and then continuing on to Bath. :

The TRAINS task supports research on a wide range of issues of crucial importance for
automated problem solving systems. Specifically, it involves extensive collaborative plan-
ning, requires a rich temporal model of action for planning and scheduling, and requires a
sophisticated model of plan execution and monitoring using incomplete information. Specif-
ically, the complete system will have to perform the following tasks:

e evaluating courses of action, calculating expected completion times, and detecting
scheduling conflicts




filling in details of the proposed plan that do not require the manager’s attention

¢ suggesting ways to solve particular subproblems that arise
e presenting and describing the current plan and the state of the world
e dispatching the plan to the (simulated) agents in the world

e interpreting reports back from the agents in the world in order to monitor the progress
of the plan and anticipate problems before they arise

e coordinating the correction and modification of plans with the manager, even as the
plans are being executed. '

On the face of it, it is not obvious that this task supports rich dialogue interactions.
Our data collection, however, revealed rich dialogues even for simple goals. This is because
much of the dialogue involves collaborative problem solving in general, such as specifying
goals, discussing problem solving strategies, and confirming or clarifying suggestions. It
turns out that the complexity of the underlying scenarios and the goals has little effect on
the range of dialogue phenomena observed, except for the obvious characteristic of length.
Clearly, the more complex the problem, the longer the dialogue required to solve it. Figure 2
contains an excerpt from one of the dialogues in the TRAINS-91 corpus [Gross et al., 1993].
The utterance number indicates the turn and the utterance in the turn. Thus 1.1 is the
first utterance of the first turn, 1.2 is the second utterance of the first turn, and so on.
The two people spoke to each other over headsets, and could not see each other. The only
information they shared was the map shown in Figure 1.

Consider a brief analysis of what happened in this dialogue. Utterance (1.1) and (1.2)
set up the goal and describe the initial situation. This goal is accepted by the assistant in
utterance (2.1). The manager then signals that she will start the planning process, by taking
the turn with the utterance okay in (3.1). Utterance (3.2) is used to maintain the turn while
the manager is thinking. Utterance (3.3) starts to describe relevant aspects of the current
state of the world, but after a 4 second wait, the assistant decides to speak (utterance
4.1). But this is interrupted by the manager with (5.1), and a clarification subdialogue is
initiated in (5.2) and (5.3). The assistant answers the question in (6.1), and the manager
accepts the answer and resumes discussing the plan with utterance (7.1). Utterance (7.2)
focuses attention on the subgoal of getting a boxcar to Corning. This sets the context
for interpreting the next few utterances. Utterance (9.2) suggests a particular. method of
getting a boxcar to Corning, namely taking a boxcar from Bath. The assistant accepts
this suggestion in (10.1), and then takes the initiative for the development of the plan in
(12.3) by asking which engine should be used. Instead of answering directly, the manager
starts a complicated clarification subdialogue about the distances of various routes. These
utterances demonstrate the incremental nature typical of spoken dialogue, and contain a
speech repair (Avon was mispronounced in (13.4) and corrected in (13.5)), and a restart (the
utterance is abandoned at the end of (13.6) and utterance (13.7) restarts with a suggestion
to send engine E2 from Elmira to Corning). The complexity of this dialogue for such a
simple goal demonstrates that the domain handily meets all of our requirements.




Manager: We have to ship a boxcar of oranges to Bath by 8 AM
and it is now midnight

Assistant: Okay

Manager: Okay
Um ... all right

So, there are two boxcars at Bath and one at Dansville and ...

Assistant: and there’s
Manager: Wait

I've forgotten where the oranges are

Where are the oranges
Assistant: The oranges are in the warehouse at Corning
Manager: Okay

’ So we need to get a boxcar to Corning

Assistant: Right
Manager: Alright

So, why don’t we take one of the ones from Bath
Assistant: Okay
Manager: So
Assistant: We need

Ckay
Which engine do you want to bring it

Manager: Oh. Um. How about

Well let’s see

what’s shorter

the distance between Avon and

Avon and um Bath or

Elmira

It looks like it’s shorter from Elmira to Corning

so why don’t you send E2

to Corning
Assistant: Okay

(1.
1.
(2.
(3.

(3.

(3.
(4.
(s.
(s.
(s.
(6.
(7.
(7.
(8.
(9.
(9.

(10.
(11.
(12.
(12.
(12.
(13.
(13.
(13.

(13

(13.
(13.
(13.

(13
(13

1)
2)
1)
1)
2)
3)
1)
1)
2)
3)
1)
1)
2)
1)
1)
2)
1)
1)
1)
2)
3)
1)
2)
3)
.4)
5)
6)
7)
.8)
.9)

Figure 2: An excerpt from a dialogue (d91-7.1 in the TRAINS-91 corpus)




In fact, handling dialogue like this is well beyond the current state o f the art of discourse
processing systems. Even with perfect speech recognition, no system yet can handle such
incremental development, mixed-initiative interactions, speech repairs and corrections. And
certainly, it is not yet possible to attain near-perfect speech recognition. So we had to
introduce some simplifying assumptions in the project from the start. The principal decision
was initially use keyboard input, thereby avoiding the speech recognition problem. We
also decided use constructed dialogues that are motivated by the corpus but have some
complexities, such as speech repairs, removed. We started some subprojects in parallel for
dealing with problems such as speech repairs, but this work has not yet been integrated
into the system. Some of this work will be described briefly in Section 7.

3 The TRAINS System as a Conversational Agent

An agent is an entity that acts in the world. The TRAINS system is an example of a
conversational agent, all of whose actions involve communication. The system performs
communicative acts when it generates sentences and sends messages to the agents in the
TRAINS world. It also observes communicative acts by other agents when utterances are
performed by the manager and reports are produced by the TRAINS world agents.

One of the insights of the early corﬁputational work on speech acts (e.g., [Cohen and
Perrault, 1979; Allen and Perrault, 1980]) was that traditional planning mechanisms could
be used for communicative acts. TRAINS can be viewed as continuing in this tradition,
although it must deal with many additional complications that arise because of the highly
interactive nature of our dialogues. But its conversational behavior still results primarily
from planning and plan execution. To see this, first consider a model of a non- communi-
cating, deliberative agent that plans and executes physical actions shown in Figure 3. This
has many similarities to the BDI (belief, desire and intention) architecture described by
Bratman et al. [1988]. The agent has a set of beliefs about the state of the world. Us-
ing these beliefs and some predetermined set of desires, the agent selects goals to achieve.
Once the agent selects a goal, it constructs an abstract plan that it believes will lead to
the achievement of the goal. When this plan is sufficiently developed, the initial actions in
the plan can be executed. We assume a division between actions used for reasoning about
plans and a more detailed level of action that directs physical behavior. The agent takes an
abstract plan and selects and executes the physical actions. It also generates expectations
about what observations it might receive based on the action performed. As observations
are made of the world, the agent uses its expectations and other general knowledge to draw
conclusions about the current state of the world. This is typically called plan monitoring in
the planning literature. Of course, when the agent’s beliefs change, it may cease to believe
that the current plan will work, and further deliberation (replanning or plan repair) will
occur, revising the agent’s plan.

A conversational agent operates in a more complex environment that involves other
agents. The TRAINS system must both plan and execute communicative actions and under-
stand the communicative actions performed by other agents. We use essentially the same
model as shown in Figure 3 but specialized to discourse actions. Figure 4 shows the model.
Using its beliefs about the domain, including beliefs about what is shared knowledge and




Goals

GOAL PLANNINT .| Abstract EXECUTION_ | Actions
-——»
SELECTION Plan | PLANNING to
{{
Belicfs Expect- ‘/ execute
and ations
Desires / Obser-
INTERPRETATION vations
DOMAIN OF OBSERVATIONS
REASONING
Figure 3: A model of a simple deliberative agent
Communicative
Goals
GOAL
Speech Nat. Lang. ,
SELECTION k ﬁNERAHO System's
‘/ Utterances
Beliefs,Desires, Expect-
including ations
Shared Beliefs jag / Manager's
and Discourse Nat Lang. UNDERSTANDING Utterances
Obligations SPEECH ACT RECOGNITIONL
REASONING

Figure 4: A model of TRAINS as a conversational agent




Shared Plan

System accepts Manager accepts
Manager's Proposed Plan System's Proposed Plan
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TSystem acknowledges TManager acknowledges
Manager's Proposed Plan System's Proposed Plan
(private) (private)
T Manager suggests T System suggests
System's Private Plan

Figure 5: The different plan modalities in handling suggestions

what discourse obligations each agent has, the system selects communicative goals. By
considering these goals, together with beliefs about the current state of the dialogue, the
system decides what speech acts to perform next. The speech acts are executed by gener-
ating natural language utterances, thereby creating the system output. When the manager
speaks, the utterance is analyzed and the intended speech acts identified, then the system’s
beliefs about the discourse state and the system’s discourse obligations are updated.

Another complication arises because the topic being discussed is itself a plan. This is not
apparent from Figure 4, but reasoning about domain plans (i.e., about action in the TRAINS
world) is a major component of the system’s reasoning as it plans its own communicative
acts and interprets the manager’s communicative acts. Specifically, the dialogue is driven
by the task to find a mutually agreed-upon (or shared) domain plan. Each agent plans
additions to the shared plan privately, and then tries to get the other agent to agree to the
extensions by communicating. Thus, the speech acts are motivated by reasoning about the
domain. Likewise, interpreting speech acts depends on identifying how suggestions from the
other agent relate to the shared plan. To encode this, speech act definitions may include
constraints that relate their content to the current shared domain plan, as first proposed
by Litman and Allen [1987].

The flow of information regarding suggestions is shown in Figure 5. The TRAINS system
supports a set of different plan modalities that capture the status of plan fragments, indi-
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~ cating whether they have been acknowledged, accepted or simply just heard. By generating

appropriate speech acts such as suggestions, acknowledgments and acceptances, the two
agents move the plan fragments through the different modalities until they have a shared
plan.

The TRAINS system also executes and monitors the domain plan. Remember that the
plan that was constructed by the dialogue involves actions by agents in the TRAINS world—
the train engineers and factory supervisors. To get this plan executed, the TRAINS system
must perform another task, planning messages to send to the agents so that they execute
the desired actions. This could be handled just like the speech act planning for the dialogue,
but instead we pursue a simpler route that assumes there is no ambiguity in the messages
generated and that all messages sent are received and understood. Thus, each message
uniquely identifies its content in a formal communication language. In addition, since the
TRAINS system cannot directly perceive the world, it can only monitor the progress of the
plan from the messages it receives back from the engineers and factory managers. As a
result, the TRAINS agent may have to plan to communicate with the other agents to get
them to produce the desired reports.

Figure 6 shows the model of the system’s activities while controlling the execution of
the domain plan produced from the dialogue. The system uses knowledge of the shared
plan and its beliefs about the world to plan communication messages to the agents in the
TRAINS world. Such messages may involve requests to perform certain actions, including
actions of producing reports about the current state of the world. Messages generated by
the TRAINS world agents are observed and interpreted by the system in order to monitor
the plan’s execution. A problem arising during the execution causes the system to start a
replanning task. If the modifications to the plan require confirmation by the manager, new
discourse goals are created.




Manager: We have to make 0J. (1.1)

There are oranges at I (1.2)
and an 0J factory at B. (1.3)
Engine E3 is scheduled to arrive at I at 3PM. (1.4)
Shall we ship the oranges? (1.8
System: Yes, (2.1
shall I start loading the oranges in the empty car at I? (2.2)
Manager: Yes, (3.1)
and we’ll have E3 pick it up. (3.2)
OK? (3.3)
System: OK 4.1

System then plans and dispatches a series of messages to the simulated TRAINS agents, who
successfully execute the plan.

Figure 7: The TRAINS-91 Dialogue

4 The Demonstration Systems

While we developed a system every year for four years, two of the systems stand out as
significant milestones. These were the TRAINS-913 system and the TRAINS-93 system. The
principal goal of the TRAINS-91 system was to demonstrate the basic ideas of using dialogue
for interactive plan construction and plan execution. The natural language processing was
fairly limited, and focused exclusively on handling the demonstration dialogue (thereby
avoiding most ambiguity resolution problems). The system illustrated the plausibility of
our model of collaborative problem solving, and demonstrated the process all the way from
interactive plan specification to plan execution. To see this, consider what the system did
at each stage of the dialogue shown in Figure 7, which was constructed by cleaning up
an excerpt from an actual dialogue in the corpus. The relevant part of the map that the
manager and system shared is shown in Figure 8.

The TRAINsS-91 system could determine plausible intentions underlying the manager’s
utterances and find the semantic connections that were necessary to construct the plan
that was being suggested. The system also planned its own speech acts and used a simple
template-driven sentence generation module.

Consider the different tasks that the system must perform in order to participate in
this dialogue. First, the sentences must be parsed and an initial semantic interpretation
computed. The sentence “We have to make OJ” is interpreted as the literal speech act:

The manager tells the system that there is an obligation to make OJ.

The system then interprets this action in the context of the TRAINS domain and determines
that the intended speech act is a suggestion of a goal, namely:

3Much of the TRAINS-91 system is documented in the TRAINS technical notes on the TRAINS-90 system.
The °91 system is described here as it was the first to include at least a real parser and simple language
generator.
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The manager suggests a goal of making OJ.

In response to this, the system creates a new plan structure to represent the manager’s
proposed plan, with the goal of making OJ. Since the manager has not yet released the
turn, the system does not attempt to respond at this stage. The next utterance, “There
are oranges at I,” is parsed and the literal interpretation is the action:

The manager tells the system that there are oranges at I.

The system interprets this act in the context of the plan suggested so far, and concludes that
the manager is suggesting where to get the oranges to make OJ. To reach this conclusion,
the system reasons about how the information that there are oranges at I is relevant to
making OJ. It successfully finds the connection, and in doing so expands out the proposed
plan. In particular, it infers that the manager is suggesting that they move the oranges at
I to an OJ factory, even though this is never explicitly mentioned. The next utterance is
interpreted similarly, namely as a suggestion about which OJ factory to use in the plan.

After processing utterance (1.3) the system now believes that the manager has suggested
moving the oranges from I to city B, and then using the OJ factory at city B to make OJ,
thereby satisfying the goal. The next utterance, “Engine E3 is scheduled to arrive at I at
3PM,” is parsed literally as the action of telling the system when engine E3 is to arrive.
But in the context of the currently developed plan, the system identifies the reason that
the engine’s arrival is relevant, namely that the engine could be used to move the oranges.
Thus, this utterance is interpreted as a suggestion to use engine E3 to move the oranges.
The final utterance in this turn, “Shall we ship the oranges,” is interpreted in context as
a more specific question asking whether the oranges should be shipped from I to B using
engine E3. To see why this interpretation is necessary, note that the system could not
answer yes to this question if it thought they should use another engine, say engine E1, to
ship the oranges at I to city G. Thus, the question cannot be answered out of the context
of the entire dialogue.

Because utterance (1.5) is a question, the system interprets it as releasing the turn
and evaluates the proposed plan. The plan as suggested is acceptable, but there are two
plausible ways to further specify it. One possibility is to use the boxcar currently at I to
move the oranges. This way, the boxcar could be loaded by the time the engine arrives,
thus saving some time. The other possibility is to wait and load the boxcar that arrives
with engine E3. While this would take more time, it might be preferable as it eliminates
the need to switch the boxcars. Faced with two plausible options, the system creates a
discourse goal to query the manager about what to do. At this stage, the system’s actions
are affected by three different needs:

1. The manager asked a question that requires an answer.
2. The proposed plan seems acceptable as far as it goes, so the system should accept it.

3. A decision needs to be made as to which boxcar should be used in the plan.

12




These three factors affect the system as it plans its response. The first two needs can be
satisfied by the single utterance (2.1), namely “yes.” This both answers the question, and
implicitly accepts the entire plan as suggested by the manager. So the proposed plan now
has been agreed upon, and becomes part of the shared plan of the manager and system. To
satisfy the third need, the system arbitrarily picks one of the options and plans a question
about whether that option is desired. This results in a speech act realized by utterance
(2.2), “Shall I start loading the oranges in the empty car at I?” In asking this question, the
system releases the turn and awaits the manager’s response.

Utterance (3.1), “yes,” both answers the question and accepts the system’s suggestion.
So the shared plan now includes the steps required to load the boxcar at I, and then couple
it to engine E3 when E3 arrives. If the manager had said “no,” the suggestion would have
been rejected and the other option could then be discussed. Utterance (3.2), “and we’ll have
E3 pick it up,” simply serves to confirm what the system has already concluded. Utterance
(3.3), “OK?,” serves to request confirmation from the system. This was required with the
TRAINS-91 system because it only took up the turn when faced with a question or request.
The request to confirm the final suggestion is satisfied simply by utterance (4.1), “OK.”

At this stage, the system believes that it has constructed a workable plan to achieve the
goal of making OJ, shown in Figure 9. Events are shown in rounded rectangles, and facts
are shown in regular rectangles. The arrows depict various forms of causal relations (e.g.,
effect, enables, generates). Shaded events that correspond to planned actions. Unshaded
events are either external events or events that are generated as a consequence of actions in
the plan. Object O1 is the oranges, F1 the factory at city B, and C1 the car used to move
the oranges. For the sake of clarity, the diagram generally ignores temporal details. The
system believes that both it and the manager have accepted the plan, so the plan is shared
knowledge.

The system then enters its next phase, which is the execution planning. It takes the
abstract plan in Figure 9 and plans a series of messages to the TRAINS agents in order to
get the plan executed. This involves reasoning about what actions the TRAINS agents can
perform using knowledge about the current state of the world. For the current plan, the
system generates the messages like the following to the agents:

To the warehouse supervisor at city I: load boxcar C1 with oranges
To the engineer of E3: When you arrive at city I, couple E3 to boxcar C1
To the engineer of E3: When boxcar C1 is coupled to E3, go to city B
To the factory supervisor at B: When boxcar Cl is at city B, unload it

To the factory supervisor at B: When the oranges are at the factory, make OJ

These messages are then sent to the appropriate agents in the simulated TRAINS world. For
the TRAINS-91 demo, the simulator was set so that all actions always succeed, so this plan
executed successfully and the orange juice was made.

The TRAINS-93 system performed the same type of task as the TRAINS-91 system, but
involved a significant effort to improve the natural language capabilities of the system.
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Figure 9: The plan constructed for the TRAINS-91 dialogue
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Manager: We better ship a boxcar of oranges to Bath by eight a.m. (1.1

System: 0K (2.1)
Manager: So we need to get a boxcar to Corning, where there are oranges. (3.1)
There are oranges at Corning. (3.2)
Right? (3.3)
System: Right (4.1)
Manager: So we need an engine to move the boxcar. (6.1)
Right? (6.2)
System: Right (6.1)
Manager: So there’s an engine at Avon. (7.1)
Right? (7.2)
System: Right (8.1)
Manager: So we should move the engine at Avon, engine E1, to Dansville
to pick up the boxcar there (9.1)
System: Okay (10.1)
Manager: and move it from Dansville to Corning (11.1)
load up some oranges in the boxcar (11.2)
and then move it on to Bath (11.3)
System: Okay (12.1)
Manager: How does that sound? (13.1)
System: That’s no problem (14.1)
Manager: Good (15.1)

Figure 10: The TrRAINS-93 demonstration dialogue

The issue of ambiguity, both during parsing and in the subsequent phases of discourse
interpretation up to the generation of speech act hypotheses, was tackled in a systematic
way. The focus dialogue for this system is shown in Figure 10, and the map was shown
earlier as Figure 1. This dialogue involves sentences that are considerably more complex to
understand. For instance, utterance 3.1 identifies a subgoal of getting a boxcar to Corning
and adds additional information on why this is a relevant goal (there are oranges there).
Another example is utterance (9.1) which both suggests an action (moving the engine at
Avon to Dansville) and the reason for doing the action (to enable the action of picking up
the boxcar there). It also includes some “run-on” utterances where the manager conveys a
plan in a series of clauses. For example, utterances 9.1, 11.1, 11.2 and 11.3 together describe
a plan in what appears to be a single sentence syntactically. There are also some complex
noun phrase constructions including appositive constructs as in (9.1) “the engine at Avon,
engine E1,” and referring expressions such as “the boxcar there,” which refers to the boxcar
at Dansville, and pronouns such as “that” in utterance 13.1, which appears to refer to the
plan constructed in the entire dialogue so far.

The natural language components were built to have significantly more coverage than
demonstrated by this one dialogue, and the parser and lexicon developed actually cover
much of our corpus of dialogues (after speech repairs are removed). Besides expanding
the basic linguistic capabilities, the TRAINS-93 system achieved a closer integration of the
techniques for reference resolution, scoping and speech act interpretation. In addition, it also
contained an implementation of a rich set of conversation acts [Traum and Hinkelman, 1992]
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and the domain plan representation and reasoning component was significantly extended.

5 The TRAINS System Infrastructure

Before looking at each component of the TRAINS-93 system, there are several general issues
that must be discussed. These concern the overall system architecture and the knowledge
representations used.

The central question concerning the architecture was whether there would be system-
wide uniform mechanism for handling alternative hypotheses for dealing with ambiguity.
An example of such a formalism would be a blackboard-style control, where each module
stored its hypotheses in a global data structure so that they could be accessed by other
modules. The advantage of such an architecture is the flexibility it provides for adding
new modules and for supporting unanticipated interactions. The disadvantage is that such
architectures can be cumbersome and provide a significant overhead to the system operation
if there are frequent “direct” calls required between modules. The opposite extreme is a
fixed configuration of modules, where each interaction can be hand-tailored to the needs of
the modules. The prime advantage of this scheme is its simplicity once the configuration
of the system is defined. In the first year of the project, our desire to produce a short-term
demonstration system dictated the latter approach. As the project continued into later
years, the rigidity of the system architecture was never as pressing an issue as developing
better component modules. As a result, the subsequent systems through TRAINS-93 have
continued using a fixed configuration, although the details of the interaction between the
modules participating in the speech act recognition phase have changed significantly. The
fixed configuration has made some kinds of ambiguity more difficult to handle, but did not
greatly impact the system development. The actual architecture for the TRAINS-93 system
is described in Section 5.1.

A related issue was whether to use a common knowledge representation language through-
out the system. A uniform representation language would have obvious advantages, but it
was not clear that they would outweigh the inherent disadvantages. Different knowledge
representation languages seem better suited for different purposes. In particular, to facilitate
the natural language processing, the KR should be richly expressive and should provide for
the efficient encoding of ambiguity. Thus, a language that mirrors the semantic structures
revealed in English would be most convenient, as it could directly represent such constructs
as predicate modifiers, modal operators, and generalized quantifiers. The representation
used to support plan reasoning, on the other hand, requires efficient reasoning techniques
specialized to reasoning about action, such as temporal reasoning, non-logical matching of
hypothesized actions to expectations, explicit representation of action relations such as pre-
conditions and effects, and a representation of plans that provides efficient search methods
to support planning and plan recognition. The usual strategy in the planning literature
is to restrict the knowledge representation language as far as possible while retaining the
essential aspects for reasoning about the effect of actions and plans.

While it may be possible for a single representation to yield the advantages of both,
we took the pragmatic route and used two different representations in the system: the
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representation for language processing was Episodic Logic (EL), while the representation
for plan reasoning was Event-Based Temporal Logic (EBTL). These representations will be
described in Sections 5.2 and refs:ebtl. To translate between the two, a conversion program
was written. Since both languages are logic-based, and have many basic similarities, this was
not an difficult task. The translation from EL to EBTL takes the form of an approximation,
where the more complex constructs in EL are approximated in the weaker EBTL. Much of
the time, no information is lost. For example, even though episodes in EL are significantly
more powerful than events in EBTL, most episodes that arise in the dialogues correspond
to simple event occurrences. Over the course of the project, the representation used become
more similar in many respects. Thus, in the long term, a single representation language
with separate specialized reasoning capabilities may be the best approach.

5.1 The TRAINS-93 Architecture

The architecture of the TRAINS-93 system is shown in Figure 11. The modules can be
partitioned into two main groups: the linguistic reasoning modules, using EL as a basis for
processing and communication, and the plan reasoning modules, using EBTL as a basis for
processing and communication. External to the system but a crucial part of the project, the
TRAINS simulator provides an ”external world” to support plan execution and monitoring.

To see how information flows through the system, consider the processing of the man-
ager’s utterance “So we need an engine to move the boxcar” (Utterance 5.1 in Figure 10).
The parser produces the following logical form in EL (with some details suppressed):

(DECL
(UTT-IMP SO-COORD
(WE1
((ADV-A (IN-DISCOURSE-RELATION
(TO1 (MOVE <THE BOXCAR>))))
(NEED-REQUIRE <A ENGINE>))))))

The DECL operator indicates that the utterance is a TELL surface speech act. The dis-
course coordinator SO~COORD connects the content of the speech act to an implicit utterance
(UTT-IMP) that must be identified from the discourse context. The speech act describes a
‘need for an engine that is related in some way (signaled by the discourse relation T01) to
the action of moving an object described as a boxcar. The angle brackets indicate unscoped
operators, which later may be scoped by the deindexing module. For instance, the con-
struction <A ENGINE> indicates an indefinite object of type ENGINE, but does not indicate
the scoping of the operator with respect to other constructs such as the NEED-REQUIRE
operator. In other words, it retains the ambiguity as to whether there is a specific engine
that is needed (the wide scope interpretation), or that any engine would do (the narrow
scope interpretation).

This logical form is passed to the deindexing module, which generates a set of hypothe-
ses about scoping and the interpretation of the referential expressions contained in the
sentence. For example, it hypothesizes that the pronoun “we” refers to the set consisting of
the manager and the system, that the definite description “the boxcar” refers to the boxcar
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introduced in utterance (3.1). It also converts the tense operators into explicit temporal
relations among episodes, and scopes the unscoped operators as far as possible. The dein-
dexing module arrives at these hypotheses on the basis of information about the structure of
the conversation up to that point, together with information about the syntactic structure
of the utterance and the interpretation of its lexical items.

The logical form and the results of deindexing are then passed to the conversation act
analyzer, which first identifies several possible interpretations of the utterance. At the core
speech act level: there are several possible interpretations:

1. An inform of a need for an engine to move the boxcar
2. A check whether there is a need for an engine to move the boxcar
3. A question whether there is a need for an engine to move the boxcar

4. A suggestion that an engine be used in the plan, with a supplementary suggestion of
moving the boxcar. :

The interpretation of the word “so” produces a hypothesis that this utterance is a fol-
lowup, subordinate to a previous utterance. In addition, discourse relations TO1 is hypoth-
esized to be a purpose relation between using the engine and moving the boxcar. Note that
the conversational act hypotheses are represented using the EBTL language and provide
the conversion between the two knowledge representations.

These interpretation hypotheses are passed to the dialogue manager (DM), where they
are checked to see which are reasonable given the discourse context. Specifically, the pre-
conditions on each conversational act are checked. For example, to evaluate the plausibility
of an inform speech act, the domain plan reasoner is queried to see if it is already shared
knowledge that an engine is needed in the plan. The domain plan reasoner returns that
this is the case, and hence the inform act is deemed implausible. For the same reason, it is
unlikely that the utterance is asking whether an engine is needed. The check interpretation
remains plausible because there are few constraints on its use as it often serves to focus or
co-ordinate the activity of the agents. To evaluate the suggest interpretation, the domain
plan reasoner is called to try to see how an engine and a move event might fit into the plan.
It finds that the engine could be used in the move-car action that was introduced when
processing utterance (3.1). Thus the interpretation of the utterance as a suggestion also
seems plausible. '

The current DM accepts all of the plausible act interpretations. Thus the sentence is
treated both as a check whether an engine is needed and as a suggestion to use an engine
in order to move the boxcar. In addition, it is interpreted as initiating new material, rather
than acknowledging, repairing, or continuing previous material.

The verified set of conversation acts are then used to update the discourse context.
The suggestion is incorporated into the manager’s proposed plan and, based on knowledge
of discourse conventions, the dialogue manager also recognizes an obligation to respond
to the check and suggest acts. If the manager had not continued speaking, the system
would have satisfied these obligations by planning to perform a speech act to accept the
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suggestions. But in this dialogue, the manager continues with the query “right?” This is
easily parsed and is eventually interpreted as a dialogue repair/elaboration that requests
that the previous action be confirmed. This creates an obligation to answer the check act
about the need for an engine, and the system plans an inform act confirming that an engine
is needed. This is passed to the generator module, which associates templates with simple
speech acts. The inform act is realized by the utterance “right.” This serves both to answer
the question and to implicitly accept the suggestion of using an engine to move the boxcar.
The system’s utterance is fed back through the system so that the system can update the
discourse state. It also allows the system to double-check its own utterances to make sure
that the intention it would recognize from the utterance is compatible with its original
intention that motivated the utterance.

In the dialogue as presented, the manager speaks next and continues the dialogue. If
the manager had not spoken by the time the system had completed processing its own
utterance, the system would have invoked the domain plan reasoner to try to expand the
plan further to find other issues that need to be discussed. This process continues until
both agents believe that there are no rernalmng problems to deal with in the plan.

With the architecture defined, the next two sections consider the major knowledge
representation formalisms used in the system.

5.2 [Episodic Logic

Episodic Logic was developed for use as a semantic theory for natural language understand-
ing [Hwang and Schubert, 1993a; Hwang and Schubert, 1993b]. It was designed to meet

the following requirements:

e expressive adequacy: the language should be powerful enough to allow us to represent
various kinds of constructs found in English, as well as the nuances in naturally occur-
ring sentences. Among other things, this includes tense operators (past and present),
aspect (perfect and progressive), various kinds of adverbials, including manner ad-
verbials (e.g., “using engine E3”), purpose clauses (e.g., “to pick up the boxcar”),
kinds of actions and events (e.g., “we need to get a boxcar”), kinds of natural objects
(e.g., “we need oranges”), modals (e.g., “need to,” “should,” “had better”), and other
intensional verbs including creation verbs (e.g., “we have to make OJ”).

o derivational adequacy: the language should support a simple, systematic derivation
of meaning from English surface structures.

e semantic adequacy: the meaning of the language itself should be precisely defined,
e., it should have a denotational semantics.

The most distinctive aspect of EL is its use of episodes, which are similar to situations in
situation semantics [Barwise and Perry, 1983]. Like a situation, an episode characterizes a
partial state of affairs over some period of time at some location. It subsumes the notion
of events that is used in many representations based on Davidson [1967], because an event
is a particular kind of episode. The content of episodes can be described using two special
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operators. The * operator indicates that an arbitrary formula is true of an episode. A
simple example would be the formula

[TR1 Move Avon Dansville] x E1

which is true only if episode E1 involves engine T R1 moving from Avon to Dansville. Square
brackets in EL indicate an argument order where the subject occurs first and the predicate
second, the same order as in English. In a Davidson-based event logic, this might be written
as (Move E1TR1 Avon Dansville), where the event is an argument to the predicate. But
EL can represent much more complex events than is possible using event arguments to
predicates. For example, the episode E2 in which every train at Avon went to some city
could be described as follows:

(V¢ . [t AtLoc Avon] D 3c. [t Move Avon c]) * E2.

This could not be encoded as a single event in an event-based logic. Episodic logic also
supports another operator, **, which asserts that some proposition completely characterizes
an episode (i.e., there is no additional information that is part of the episode).

EL makes extensive use of predicate operators: operators that map predicates into
other predicates. For example, the predicate OJ is true of quantities of orange juice. The
predicate operator make takes this predicate and produces another predicate (make OJ ),
which is true of any agent that makes orange juice. Many different syntactic constructs
have simple interpretations when viewed as predicate operators. Special forms are used to
capture adverbial expressions. For instance, the sentence The train left at 8 PM would be
represented by the form ((ADV-E (At-time 8PM))[(The Train) leave]), where the ADV-E
operator associates an adverbial modifier (in this case, occurring at 8 PM) with an event
(in this case, event of the train leaving).

EL also has an operator, K, which constructs a kind or type of object from a predicate.
The noun phrase orange juice for example, often refers to orange juice in general rather than
to some specific quantity of orange juice, as in the sentence I like orange juice. If OJ is a
predicate true of quantities of orange juice, then (K OJ) is the kind of thing, or substance,
orange juice. Kind terms are used extensively with events as well, as in the sentence | want
to load the oranges, where what is desired is the performance of some event of the kind
“load the oranges,” rather than a specific act of loading oranges.

Episodic Logic readily lends itself to inference; contrary to a widespread myth a rich
syntax is no impediment to effective inference. Though only a very limited set of EL
inference capabilities has been used in TRAINS-93, EL has been separately implemented in
the EPILOG system [Schaeffer et al., 1993]. EPILOG is a powerful knowledge management
and inference system allowing data-driven inference, goal-driven inference, and featuring
integration with about a dozen specialist modules for accelerating temporal, taxonomic,
partonomic, set-theoretic, numeric, and other special types of inference.

5.3 The EBTL Representation

EBTL (Event Based Temporal Logic) is a typed logic based on interval temporal logic
[Allen, 1984; Allen and Ferguson, 1994], which was designed to facilitate reasoning about
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actions and events in temporally complex worlds. It is built on top of the RHET knowledge
representation system [Allen and Miller, 1991], which provides the system with several key
reasoning capabilities, including type hierarchies and typed unification, equality reasoning,
temporal reasoning, frame-like event representations, and an explicit context mechanism for
representing belief contexts, hypothetical reasoning and other modalities. EBTL provides
additional constructs that proved essential for representing the meanings of natural language
input, including explicit quantifiers, discourse markers, lambda expressions and quoted
propositions.

The language uses a reified event representation, where event instances are denoted by
explicit terms in the language. Figure 12 shows part of the event hierarchy for the TRAINS
domain. This hierarchy predominantly deals with events caused by actions, which capture
different actions available to the TRAINS domain planner. Events that cannot be directly
executed are classified as non-action events. These events are necessary to provide a clean
interface with the natural language system, because people often talk in terms of the events
caused rather than the actions executed. For example, the system never plans to execute an
arrive event. Rather, it plans a move action, one aspect of which is sometimes described as
an arrive event. Another important class of events in this domain is the class of speech acts.
Figure 13 summarizes the speech acts that are currently used in the TRAINS-93 system. The
arguments to events are identified by role functions, which are defined over event classes.

The terms in EBTL are the ones allowed in RHET. Constants are written as atoms
within square brackets. Thus [ENG3] is a term. Distinct names do not necessarily identify
distinct objects, since the language supports equality reasoning. When terms are defined,
their type is usually defined as specifically as possible. [ENG3], for instance, is declared
to be of type T-ENGINE. Variables are indicated using the form ?varnamextypename. For
instance, 7x*T-ACTION is a variable that ranges over all objects of type T-ACTION.

Propositions in EBTL are represented by lists. For instance, since EQ? is the equality
predicate, the proposition

(EQ? [F-ENGINE [M2]] [ENG3])

would assert that ENG3 is the engine causing the move event M2. EBTL includes some
special quantification forms that provide a convenient interface to the language modules.
In particular, the following supports definite descriptions. The formula

(THE var dm restriction form)

is true only if there is a unique contextually-salient object which satisfies the restriction
(including the type restriction on the variable), and which satisfies the form. This is a fairly
standard treatment of “the” as a generalized quantifier except for the discourse marker .
dm, which was created by the deindexing module as discourse referents. Once the referent
of the definite description is identified, it is asserted to be equal to the discourse marker.
This allows the discourse module to resolve subsequent references to the same object. This
same technique is used for any construct that creates an object in the discourse history. For
example, explicit existential quantification can create a discourse referent as well, as seen by
the discourse fragment There is an engine at the station. It has overheated. The pronoun
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Figure 12: The event hierarchy of TRAINS domain events

T-INFORM  The speaker aims to establish a shared belief in the proposition
asserted

T-YNQ The speaker asks a yes-no question, creating an obligation for the
hearer to respond

T-CHECK The speaker is verifying that a certain proposition is true (that
the speaker already suspects is true)

T-SUGGEST The speaker proposes a new item (action, proposition) as part of
the plan

T-REQUEST The speaker aims to get the hearer to perform some action. In the
TRAINS domain, this is treated like a suggest, with the addition
of an obligation on the hearer to respond.

T-ACCEPT  The speaker agrees to a prior proposal by the hearer.

T-REJECT The speaker rejects a prior proposal by the hearer.

T-SUPP-INF  The speaker provides additional information that augments, or
helps the hearer interpret some other accompanying speech act.

Figure 13: The illocutionary acts used in TRAINS-93
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it in the second sentence refers to the engine introduced in the first sentence. Thus, there
is an existential quantifier form in EBTL that contains a discourse marker, namely

(LF-EXISTS wvar dm restriction form).

EBTL also contains terms that explicitly denote plans and predicates that are used to
describe the content of plans. Three important predicates often occur in the content of
suggestions, namely:

(GOAL-OF proposition plan): the proposition is a goal of the indicated plan

(USES object proposition plan): the object is used in the plan, in part because of its
property described in the proposition.

(PLAN-EVENT event plan): the event is part of the plan.

For example, the EBTL representation of the suggest interpretation of “We better ship a
boxcar of oranges to Bath by eight a.m.” would be a suggest act with the following content
(after simplifying some lambda expressions):

(LF-EXISTS 7P*T-PLAN ?DM NIL
(GOAL-OF
(LF-EXISTS ?V*T-ORANGES [X1381] (QUANTITY ?V (BOXCAR-UNIT 1))
(LF-EXISTS ?M*T-MOVE-COMMODITY [M11]
(AND (ROLE ?M R-COMMODITY ?V*T-ORANGES)
(ROLE ?M R-DESTINATION BATH)
(BEFORE [F-TIME ?M] [8aM]))
(OCCURS 7M)))
7P))

This formula is true if there is some plan has a goal that there exists a boxcar of oranges
that is moved to Bath before 8AM. The dialogue manager would have to establish what
plan is being talked about here based on the discourse context. In this case, since it is the
beginning of the dialogue, it is a new plan that is created as part of interpreting this first
sentence.

6 An Overview of the TRAINS Modules

Now that the overall system architecture has been discussed, and the knowledge represen-
tation languages defined, we can describe the individual modules of the TRAINS-93 system -
in more detail. The components related to parsing are described in the first three sections.
Section 6.1 describes the grammatical formalism that drives the syntactic processing and
semantic interpretation. Section 6.2 describes lexical processing and Section 6.3 describes
the stochastically-driven parsing algorithm used to find the most plausible interpretation of
the input. The next three sections describe the discourse processing. Section 6.4 describes
the deindexing module, and Section 6.5 describes the conversational act interpretation.

24




R

/FI N\ I?NiN\\
PRES PAST BASE INF -EN PARTICIPLE

-ING _PASV

Figure 14: The VFORM feature tree

Section 6.6 describes the dialogue manager. The final two sections describe the domain
reasoning components. Section 6.7 describes the domain plan reasoner and Section 6.8
describes the execution planner.

Given the space limitations of this paper, these descriptions are necessarily short on
details. More information on each of the modules can be found in the references and in
forthcoming papers in the TRAINS technical note series.

6.1 Syntactic and Semantic Rules

The NL front end of TRAINS consists of a chart parser working off a context-free grammar
that directs computes logical forms expressed in EL in rule-by-rule fashion.* The grammar
is like generalized phrase-structure grammar (GPSG) [Gazdar et al., 1985] in its use of
categories consisting of features, its treatment of unbounded movement in terms of slash
features, and its reliance on feature principles such as the head feature and foot feature
principles to constrain feature percolation. It organizes feature values as trees, rather than
as sets of alternatives.® For instance, there is a VFORM (verb form) feature tree as shown
in Figure 14. Thus, rather than the VFORM feature having the values FIN (i.e., tensed)
and NONFIN (i.e., non-tensed), it splits into FIN and NONFIN, and FIN in turn splits
into PRES and PAST, and so on. In other words, this tree is viewed as a type hierarchy
of predicates applicable to verbs (and their projections), where the immediate subtypes of
each type are exhaustive and mutually exclusive. Unification of two features lying on a
"vertical path” in a feature tree yields the lower (more specific) feature, while unification of
features not lying on such a path yields nil. The feature trees are non-overlapping, i.e., the
features in any one tree are distinct from the features in all other trees. The feature-tree
approach leads to a quite compact syntax for grammatical rules.

Figure 15 shows a few sample phrase structure rules, paired with corresponding semantic
rules (with slight modifications for readability). Subcategorization restrictions are handled

*See [Allen, 1994] for an introduction to chart parsing and rule-by-rule interpretation.

®There is some similarity to the grammatical sort hierarchy in HPSG [Pollard and Sag, 1994], though
HPSG does not subdivide atomic features values.
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S-tell ;; e.g., [we have to make 0J] [.]
:SYNRULE (S tell) <-- (S decl) (PUNC tell)
:SEMRULE (Decl 1) »

5_n2+v2 ;; e.g., [we]l[have to make 0J]
:SYNRULE (S decl) <-- (NP nom) (VP)
:SEMRULE [1 2]

V2_V+V2inf ;; e.g., [have] [to make 0J]
:SYNRULE (VP) <-- (V _V2inf) (VP inf)
:SEMRULE (1 x (1 [x 2]))

V2_V+V2base ;; e.g., [will/did/to] [make 0J]

» :SYNRULE (VP) <-- (V _V2base) (VP base)

:SEMRULE (1 x (1 [x 21))

V2_V+N2pred ;; e.g., [make] [0J]; [start] [a fire]
:SYNRULE (VP) <-- (V _N2pred) (NP pred acc)
:SEMRULE (1 2)

Figure 15: Some simple grammar rules

by features like _V2inf, which apply to verbs that takes an infinitive-form verb phrase
complements. These are currently atomic features, though eventual use of complex features
is planned. In the semantic rules, round and square brackets are interpreted as in Episodic
Logic, 1 is the usual lambda operator, and angle brackets indicate an unscoped operator.
Also, numeric arguments 1, 2, ... in a semantic rule refer to the semantic values (logical
forms) of the first daughter, second daughter, etc., shown on the right hand side of the
syntactic rule.

A set of lexical entries adequate for parsing “We have to make OJ” is shown in Figure 16.
The lexical entries are automatically augmented with default features where these do not
conflict with explicitly assigned features. For example, verbs receive default features immobl
(cannot head a question), numb (agrees with any number), per (the root of the person-tree,
indicating agreement with any person), base, and main (can follow emphatic “do”). Thus
the verb havel would receive the additional features immobl, per, and main.

The unscoped logical form determined by these rules for “We have to make OJ” (after
three lambda-conversions) is

(<pres must> [we (make 0J)])
or after scoping of the pres operator would be,
(pres (must [we (make 0J)])).

This is an EL formula asserting that there is a present requirement that we make QJ.
The symbols pres and we in this formula are indexical expressions to be resolved in later

processing.
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wel
:SYNRULE (NP nom iper plur anim pron) <-- we
:SEMRULE we

havel ;; e.g., "We [have] to make 0J"
:SYNRULE (V _V2inf pres plur) <-- have
:SEMRULE <pres must>

tol ;3 infinitive auxiliary 7

:SYNRULE (V inf aux _V2base) <-- to
:SEMRULE (1 x x) ; \ie, identity function

make?2
:SYNRULE (V _N2pred) <-- make
:SEMRULE make

0J1
:SYNRULE (N ibar mass) <-- 0J
:SEMRULE 0J

Figure 16: Some simple lexical rules

The TRAINS grammar consists of 246 phrase structure rules and 1844 lexical rules gen-
erated from a 770 word lexicon. It uses 326 features organized into 38 feature trees. Some
sample sentences accepted by the grammar are shown in Figure 17. The grammar covers
most of the basic English constructs, including general syntactic and semantic analyses of
the following:

e Infinitives
e Treatment of tense, aspect and temporal adverbials
e Unbounded dependencies (i.e., topicalization, wh-questions, relative clauses).

e Sentential complements (both tensed and untensed, e.g., “we hoped the oranges would
arrive before 8 p.m,” “we suggested that you ship the oranges to Bath”)

® Questions (both yes-no and wh-questions) and imperatives

e Indirect questions (i.e., embedded questions such as “I know who fixed engine E3”)

e Prepositional phrases, such as “put the oranges in the box,” “the 0J factory in Avon,”
“shipped it in a hurry,” “drive along the rail,” clausal adverbials, e.g., “since,” “until,”
and “after” clauses, and modal adverbials, e.g., “without doubt”

e Perception sentences and other sentences involving causative verbs with naked infini-
tive complements

e Certain forms of ellipses

e Various auxiliaries (including modal ones)
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We have to get one tanker of orange juice to Avon and a boxcar of bananas to Corning.
We have to do both by 3 p.m.

So, let’s start with the orange juice.

In order to get orange juice to Avon, we have to get the oranges to the orange juice
factory, and then the orange juice to Avon.

Essentially, we have to, again, get the boxcar and an engine to Corning.
So, the fastest way to do that is from Elmira.

I assume one boxcar of oranges is enough to make a tanker of orange juice.

Figure 17: Some sample sentences that the TRAINS grammar can handle

e Certain types of partitives and measure terms (e.g., “two gallons of 0J”)

There are some areas where the grammar needs to be extended, including a treatment
of quotation and parentheticals, some complex referring expressions (e.g., “From Avon to
Bath—do you know how far it is?”), complex quantifiers (“almost every one in this room”),
and gerundive and participial adverbials (“upon receiving the shipment,” “seen from the
east”). Problems also arise with some counterfactuals sentences (e.g., “we get back to
Corning 2 hours later than we would have”), some compound nominals (e.g., “if we do
the route which the banana guy isn’t doing”), ordinals, some expressions of pragmatic
importance (e.g., “that seems to be the next closest one”), and handling mixed speech acts
(e.g., “now let me remember—which is the boxcar we’ve decided to use for the bananas?”).

In retrospect, many of our original ideas in developing the grammar have turned out
well. Specifically, the following are positive conclusions:

e The compositional hypothesis has worked out very nicely, with Montague style rule-
to-rule syntax-semantics mapping. The implementation of the semantic interpretation
mechanism is simple and semantic translation is obtained as a by-product of parsing.

e The fully-declarative grammar, based on general principles rather than domain specific
characteristics, made scaling up no problem.

e The tree organization of features turned out to be convenient for stating the grammar,
and efficient to use in the parser.
6.2 Lexical Processing

While it was easy to construct the full set of lexical entries for the test dialogues by hand,
there is ample evidence that lexicon building is a never-ending process. In the TRAINS
dialogues, for instance, the following words occur that are not present in the 60,000 word
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Alvey lexicon [Ritchie et al., 1992]: simultaneously, unhitch, unsolvable, independently, ap-
prozimately, solvable, decouple, and concurrently. The TRAINS lexical analyzer can produce
meaning postulates for classes of words like these that involve derivational affixes.®

We use knowledge of the meaning of derivational affixes to hypothesize semantic inter-
pretations of previously unknown words. A new predicate is created for the new word and
meaning postulates are posited based on the affix and stem involved. Such an approach
to derivational affixes has not been tried previously in computational linguistics, although
the idea was proposed by Chierchia and McConnell-Ginet [1990]. Consider an example.
The verb couple is in the TRAINS lexicon, and describes an action that results in a state
where the engine and car are linked together. The word decouple, on the other hand, is not
in the lexicon as it did not appear in the corpus. When faced with this word, the lexical
analyzer would first parse the word into an affix and stem, namely de- and couple. A new
predicate, DECOUPLE1, would be defined in the system to stand for the meaning of the new
word. The system’s knowledge of the uses of the affix de- would indicate that decouple is,
like the interpretation of the word couple (say COUPLE3), a verb that has a definite resulting
state. In addition, it would add a meaning postulate that asserts that the resulting state of
a DECOUPLE{ action is the negation of the resulting state of COUPLE3, namely not-attached.
Once this information is defined, the system can syntactically and semantically process the
sentence as usual.

To make this technique truly robust and general, however, will require the construction
of large lexicons with detailed semantic entailments for each entry. This will be very time
consuming, but there does not seem to be a way to automatically derive this sort of rich
semantic information about word meanings in any other way. More details on this approach
can be found in [Light, 1993].

While all the inflectional forms of words used in the demonstration dialogues were hand-
coded in the lexicon, words outside this core set are processed using the Alvey morphological
analyzer [Ritchie et al., 1992], which itself uses a Kimmo-based segmenter and a unification-
based chart parser. Inflectional affixes are treated compositionally where each inflectional
process introduces an operator that transforms the meaning of the stem into the mean-
ing of the inflected form. One problem we faced was the inefficiency of chart-parsing for
computing word structures. For example, it took 20 minutes on a Sparc 10 to parse the
word reconsideration. There were 44 entries in the lexicon that were considered during the
parse, including words and affixes such as r-, re-, ret-, con-, -side, rat-, -ion, -ration, and, of
course, consider). Some sort of preference-based morphological parser is obviously needed
to produce the most likely readings quickly.

%In morphology, there is an important distinction between inflectional and derivational forms. Inflectional
forms typically relate to agreement and other phenomena in language. The inflected form is the same
syntactic category as its root form, and there is a systematic relationship between the meaning of the
derived word and that of its base form. The verb booked, for example, indicates the past tense form of
the verb book. Derivational forms, on the other hand, often change the syntactic category and can have
quite arbitrary eflects on the word’s meaning. But many are quite systematic. The prefix un-, for msta.nce,
typically produces the opposite meaning (compare ungrateful with grateful).
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6.3 The Parser

The parser used in the TRAINS-91 system was a simple left-corner backtracking parser, which
was implemented quickly for use in the demo. Even in the TRAINS-91 system, where the
‘grammatical coverage was limited to the specific sentences in the demonstration dialogues,
it was difficult to ensure that the parser identified the appropriate analysis of each sentence.
With the push to develop a grammar that could cover most of the TRAINS corpus, some
efficient disambiguation techniques were essential. First we implemented an optimized chart
parser with top-down filtering as a basis for the TRAINS-93 parser, but it did not perform
well on the expanded grammar. In fact, some sentences that could be accepted by the
grammar in principle could not be parsed because of memory limitations. More telling,
in a test suite of 200 sentences that we know the grammar can accept, if we limited the
parser to 5000 parser operations,” fully 40% of the sentences cannot be parsed. Even when
a parse was found, about half the time it was not the correct parse. For those who have
built large-scale parsers, a 50% accuracy rate might seem like a promising start, but many
utterances in the TRAINS corpus are very simple, such as the single word Okay. So a more
revealing accuracy measure is based on utterances that have more than one possible parse
given the grammar. For these, the chart parser produced the desired interpretation only
24% of the time. Combining this with the fact that 40% of the sentences were not parsed
at all, yields an overall accuracy rate of less than 15% on the test sentences!

To improve both the accuracy and the efficiency of the parser, we explored a range of
stochastic techniques. We first tried a pure probabilistic context-free parser (PCFG), but it
did not improve things much. The PCFG on the same set of sentences achieved an accuracy
rate of only 36%, and still failed to produce a parse on over 40% of the utterances, yielding
an overall accuracy rate of less than 22%. So we explored a different approach. Rather
than using probability theory to evaluate the likelihood that a constituent will lead to the
correct parse, we used probability theory to evaluate parser search decisions given the local
context of the sentence. The idea is very simple. The parser is a chart parser that uses
trigram probabilities to select which active arc to extend next. As a result, a constituent
is built using a rule R, only if each arc extension involving R is favorable based on the
trigram probabilities computed from the input. The system does not compute a probability
for a constituent once it has been found. Rather, it is added to the chart and is available
for any arc extension operation. To see the difference between our approach and standard
probabilistic parser, consider the estimates used to parse the noun phrase “the boxcar at
Dansville” in the sentence “the boxcar at Dansville is empty.” In the PCFG approach, the
probability of the constituent NP would be computed as follows

P(NP | The bozcar at Dansville) =
~ P(NP + NPPP |NP) - P(NP « DETN | NP) -
P(PP « PNP | PP) - P(NAME | NP) - P(the | DET) -
P(bozcar |N) - P(at | P) - P(Dansville | NAME)

where P(NP + NPPP | NP) is the conditional probability of rule NP + NPPP being used
given that you have an NP. Note that this approach would assign the same probability to a

"Since this is a chart parser, we implement this by allowing only 5000 active arcs to be constructed.
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proposed NP built from “Dansville at the boxcar,” as the same rules and lexical probabilities
are involved. In contrast, our parser would build an NP from “the boxcar at Dansville”
only if all the following parser transitions were at one stage the best rated operation in the
parser (where o is the “dot” operator showing how much of the rule has matched so far,
and the second word in the sequence is the current word being processed, so

P(NP < DET e N | the bozcar at)

is the conditional probability of the rule NP < DETN being completed by a noun given the
input word “boxcar” is preceded by the word “the” and followed by the word “at.”):

P(NP ¢+ @DETNX | § the bozcar)

P(NP ¢ DET e N | the bozcar at)

P(NP e NPPP | § the bozcar)

P(NP < NP e PP | bozcar at Dansville)
P(PP « ePNP | bozcar at Dansuville)
P(PP < P o NP | at Dansville is)
P(NP < e NAME | at Dansville is)

This approach would assign a completely different probability to the NP “Dansville at the
boxcar” and would never build such an NP constituent unless it were the only possible
interpretation. Our algorithm does not estimate the probability of constituents, rather it
constrains the insertion of constituents onto the chart. All constituents that are added
to the chart are equivalent as far as the likelihood of being used in further operations is
concerned. This eliminates the problem found in many algorithms where the probability of
a constituent decreases in proportion to the length of input it covers. The probabilities for
lexical trigrams above are approximated using category trigrams and lexical probabilities
for each category.

Most similar to our approach is the trigram-based component of the algorithm described
by Magerman and Weir [1992]. Beyond this similarity, however, the differences between the
approaches are significant. They focus on computing the probabilities of constituents, and
condition the probabilities on the parent rule. We have not yet be able to compare this
algorithm to our own.

The results of our tests show substantial promise. Out of our corpus of 200 parsed
sentences with than one interpretation, we successively selected subsets of the dataset as a
test set and then trained the grammar on the remaining sentences. This allowed us to do
extensive testing with a fairly small corpus using the cross-validation method. As before,
we limited the parser to 5000 operations. Our stochastic parser achieved an accuracy rate
of 58% on these sentences, and found a parse for all but 6% of the sentences, giving an
overall accuracy rate of 54%. A comparison of the results is shown in Figure 18. The
average search factor gives the number of arcs proposed for each correct arc used in the
final interpretation. Thus a factor of 6.2 means the parser generated 6.2 arcs on average to
find one arc in the solution.

Thus the method appears to have strong promise. To see whether it will improve with
further training, we also did the same test on the training data. Our parser achieved a
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Method Percentage Accuracy rate | Overall Average search
parsed in 5000 | for sentences accuracy rate | factor
edges parsed
Our method 94% 58% 54.5% 6.2
PCFG 59% 36% 21.2% 15.4
Chart parser 61% 24% 14.6% 27.5
w/top-down
filter

Figure 18: Sentence accuracy on test set when limited to 5000 edges

99% accuracy rate when run on the training data, with no sentences failing to parse. The
average search factor was only 1.1. In contrast, the PCFG on the same test achieved only a
58% accuracy on the 74% of the sentences that were parsed. Thus, we can expect significant
further improvement on our parser as the training set of parsed sentences is increased.

6.4 Deindexing

The role of the deindexing module is to interpret all indexical expressions, including finding
plausible hypotheses about the referents of referring terms and resolving scope ambiguities
that arise with quantified terms and with operators. There is a large literature on these
issues, typically expressed in terms of syntactic preferences for certain scopings. For exam-
ple, many researchers have noted the tendency for quantifiers in the subject position to take
wide scope. Thus the preferred reading of the sentence “Every boy ran in one race” is that
there are many races involved, whereas for “One race was run by every boy,” the preference
would be for one race. The problem with such rules is that the preferred interpretations
can be strongly influenced by the previous discourse context and commonsense knowledge
about which interpretation is more likely. The key idea explored in this work was that scop-
ing decisions are parasitic on the rest of discourse interpretation. Referent determination
is performed on unscoped forms, and then the possible scopings are constrained in order
to support the most likely referential interpretations. It may turn out that some scoping
decisions are never made at all if they do not affect the interpretation of the sentence one
way or another.

Thus, a distinction is made between semantic ambiguity and perceived ambiguity. Even
though a sentence may have a very large number of alternative readings (and hence is
semantically ambiguous), it may be that all these readings do not have to be generated
because the ambiguity can be represented implicitly in an ’underspecified’ representation. -
Clearly a key prerequisite for this research is a representation that supports inference on
such underspecified representations. Poesio [1994] discusses a model-theoretic semantics for
unscoped forms, where an unscoped formula denotes a set of fully-scoped propositions, one
for each possible interpretation.

The theory of discourse interpretation on which the deindexing module is based is Con-
versation Representation Theory (CRT), an extension of Discourse Representation Theory
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(DRT) [Kamp, 1981]. CRT is designed to deal with semantic ambiguity and to allow the
representation of pragmatic information present in conversations, such as the presence of
multiple discourse topics and the organization of utterances in discourse segments. The
deindexing module maintains and reasons about DRSs, which can be thought of as gener-
alizations of theories of first-order logic: in addition to a set of facts, they also include a
set of discourse referents (or discourse markers). The operations on DRSs can be thought
of as generalizations of inference rules, where, in addition to deriving new facts, they can
also create new discourse referents. One thing that distinguishes CRT from DRT is that
most of the rules used are interpreted as default rules, and thus they generate hypotheses
that might be overridden by other hypotheses. Thus, the module itself can be viewed as a
hypothesis generation system that operates in a forward chaining manner. It maintains a
queue of hypotheses, then applies discourse interpretation rules to produce a new set of hy-
potheses, pruning away any that are equivalent to already existing hypotheses. These rules
assign referents, such as assigning an anaphoric interpretation to a definite noun phrase,
determine the scope of operators, and so on. The behavior of the module is defined in a
completely declarative way.

The input to the deindexing module is a parse tree with each node annotated with its
semantic interpretation in unscoped EL. A preliminary hypothesis about the state of the
discourse situation after the new utterance is obtained by deriving one or more conversa-
tional events from the underspecified representation, and adding them to a distinguished
DRS, called the root DRS, that represents the state of the conversation prior to this last
utterance. Consider for example sentence 9.1 in Figure 10, “So we should move the engine
at Avon, engine E1, to Dansville and pick up the boxcar there.” There are three reference
problems in the sentence: the definite “the engine at Avon,” the deictic expression “there,”
and the definite “the boxcar there.” As far as scope is concerned, the main problem is to
determine the relative scope of the modal “should” and the definite descriptions.

First of all, the module posits two conversational events: one corresponding to the
occurrence of the discourse cue “so” (that in this context signals a passage to a new phase
in the conversation), the other corresponding to the rest of the utterance. Then the module
starts trying to identify a value for all the context-dependent elements of the interpretation
of the sentence, applying all of its rules in parallel. Every time the system manages to
resolve all of the contextual aspects of the interpretation of a sentence constituent, it applies
a “construction rule” like those of DRT which has the effect of a scope assignment rule. For
example, as soon as the system is able to identify the referent of the engine at Avon (engine
E1) no more contextual aspects of the definite need to be resolved, and therefore the definite
can get its scope. The hypothesis behind this is that all operators that need scoping have
some contextually dependent element to be resolved, and all sentence constituents that
have no such contextually dependent aspect are left unscoped. In the case of 9.1, the
deindexing module, besides resolving the two definite descriptions and the deictic “there,”
also hypothesizes that the modal “should” should be interpreted with respect to the plan,
i.e., that it means that there is (at least) one course of action that will achieve our goal,
and this is to move the engine at Avon, rather than meaning that we have social obligations
to move the engine.

Because all hypotheses are generated in parallel, the module might end up generating
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distinct hypotheses that differ only in scoping even when all contextual aspects of the
interpretation are resolved in the same way. This problem is prevented by pruning any
hypothesis that assigns the same values to the context-dependent elements as an existing
hypothesis. The module does generate multiple hypotheses, however, when some referential
element can be resolved in multiple ways. For example, in utterance (11.1), the pronoun
“it” can refer to either the engine or the boxcar. Most of these ambiguities could be resolved
by using commonsense knowledge (e.g., once two objects are coupled together, if you move
one the other moves as well, which makes the two hypotheses equivalent).

The resolution strategy that leads the module to interpret “there” to refer to Dansville
(rather than Avon, also mentioned in the sentence) is based on two hypotheses: (i) that
“there” refers to the focus of attention, and (ii) that verbs of movement may move the focus
of attention to the final destination of the movement. The module when interpreting the
sentence hypothesizes that the manager may have intended for them to have Dansville as a
mutual focus of attention after uttering the sentence, which enables the module to interpret
“there”. Poesio [1994] discusses some of the complexities in modeling the movement of
focus of attention.

Finally, the deindexing module is responsible for introducing episodic variables into the
formula and deindexing temporal expressions. In addition to tense operators, a preliminary
LF may also involve various indexical temporal expressions such as aspect operators, index-
ical terms (e.g., “tomorrow”), and time adverbials. These expressions need be deindexed
with respect to the current context. As a very simple example, the sentence “E3 picked it
up” is initially translated into

(past [E3 pick-up It]).
After deindexing, this becomes
(326 : [[e26 be fore u25] A [€23 orients €26]]. [E3 pick-up C1] * xe26]).

where u25 is the episode representing the utterance and €23 is an episode described in an
earlier utterance that provides the context for this utterance. We have developed tense trees,
part of the context structure, and a set of deindexing rules [Hwang and Schubert, 1992], that
transform the indexical logical form into a context-independent LF, simultaneously updating
the tense tree component of the context structure. Tense trees allow us to automatically
identify orienting episodes (as indicated by the orients relations in the above formula).

One obvious weakness of the current implementation is the lack of two-way interaction
with the domain reasoner. For instance, it is difficult to handle references to objects that
are implicitly introduced in the results of actions. Consider the dialogue fragment

Send the boxcar to Avon and unload the oranges. Meanwhile, send the engine
to Avon, hook it up to the empty borcar and send it to Bath.

The problems arise in interpreting the NP “the empty boxcar.” The fact that the boxcar
is empty requires knowledge about the effects of the unload action. Also note that the fact
that the boxcar is at Avon is also an implicit constraint on the referent that would have
to be derived from the fact that the engine is at Avon, and so cannot be hooked up to
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any car unless it is at Avon as well. In such cases, the deindexing module may delay the
identification of the referent and leave it for the domain reasoner to determine during plan
recognition.

6.5 Conversation Act Analysis

Conversational action is represented using the theory of Conversation Acts [Traum and
Hinkelman, 1992] which involves interactions at four different levels:

e turn-taking: acts that maintain, release, or take the turn in the dialogue;

e grounding: acts that deal with establishing shared knowledge about the dialogue, e.g.,
acknowledgments and repairs (as in [Clark and Schaefer, 1989]);

e core speech acts: the illocutionary acts found in traditional approaches, e.g., inform
acts;

e argumentation: acts that characterize the relationship between utterances (e.g., one
utterance elaborates on another).

Each utterance will generally contain acts at each of these levels.

The analysis of core speech acts and argumentation acts occurs in two phases in the
TRAINS system, as described by Hinkelman and Allen [1989]. The first phase (interpreta-
tion) uses syntactic and semantic patterns that indicate common conventional readings for
various utterance forms. For example, there is a rule that says that sentences of the form
“Can you do X?” are often a request to do X, although they can also be interpreted literally
as a yes-no question. Sentences of the form “Why not do X?” on the other hand, typically
signal suggestions, and any utterance that uses the adverbial please is a request. Once all
the possible conventional readings are constructed, the second phase (pruning) is a filtering
process, where each possible interpretation is considered in context to see if it is reasonable.
As described earlier, the most effective filters are based on checking the preconditions of
the acts.

In the TRAINS-91 system, the speech act interpreter operated on the logical form of the
utterances after being converted into EBTL. While this was sufficient for the initial demo,
it was clear that the approach was limited because the module could not use information
about the syntactic and semantic structure of the original utterance.- As a result, in the
TRAINS-93 system, the speech act interpreter works directly on the unscoped forms created
by the parser, extended with the discourse markers created by the deindexing module. The
result of this module is a list of possible speech act interpretations represented in EBTL.
Thus the speech act interpreter subsumes the old converter code and provides the transition
from Episodic Logic into EBTL.

The candidate speech act interpretations are generated by rules that match syntactic
and semantic properties of the parser output. Each rule that matches identifies a possible
speech act and its propositional content. Consider a simple example: processing the sentence
“There’s an engine at Avon.” The deindexer first associates a discourse marker with each
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major constituent in the parse tree, say D1 for the S structure (which is a proposition
asserting the existence of an engine at Avon), and D2 for the NP (which is an indefinite
object that is an Engine at Avon). The speech act interpreter has at least two rules that
match this structure, characterized as follows:

e If utterance is a declarative sentence rooted at node N, then one possible
speech act is an INFORM act of the content associated with the discourse
marker of N.

o If utterance is a sentence of the form There is N, for some node N, then
one possible speech act is a SUGGEST to use the object associated with
the discourse marker of N in the plan.

These two rules produce two possible interpretations:

INFORM : (LF-EXISTS ?x*T-ENGINE [D2] T (AT-LOC ?x [AVON]))

SUGGEST: (LF-EXISTS ?x*T-ENGINE [D2] T
(USES 7x*T-ENGINE (AT-LOC ?x [AVON]) <THE T-PLAN>))

Identifying which plan is being discussed is left for the dialogue manager to resolve. In this
case it would be assumed to be the domain plan with the goal of shipping oranges, that is
already under discussion. The pruning phase decides which of the potential acts actually
occurred, as described in Section 5.1 above.

Grounding act analysis is based on comparing the current utterance to the discourse
history to determine how the current utterance advances the state of mutual understanding.
The current utterance might initiate new content, or continue, repair or acknowledge a
previously initiated unit. The grounding theory is described in [Traum, 1994].

Turn-taking analysis is based on a determination of who is expected to speak next. In
the current system with typed input delivered a full sentence at a time, every utterance is
assumed to release the turn to the other speaker, unless the same agent produces the next
utterance before conversation act analysis for the previous utterance has been completed.
Special turn-taking signals are also provided, so that the manager can continue or release
the turn explicitly without relying on this timing.

6.6 The Dialogue Manager

The dialogue manager (DM) is responsible for maintaining the flow of conversation and
making sure that the conversational goals are met. To do this, it maintains a model of
its mental state and the discourse context (including the turn, current domain plan, and
grounding and plan-based focusing information). For TRAINS, the main goals are that an
executable plan which satisfies the manager’s domain goal is constructed and agreed upon
by both the system and the manager and then that the plan is executed.

The DM updates the mental and conversational state based on the effects of observed
conversation acts, deliberates on its conversational state, which may cause further updates.
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When appropriate, it invokes the domain plan reasoner, the domain plan executor, and
to the generator to generate utterances back to the manager. The model of mental state
includes the following (as first seen in Figure 4):

e nested beliefs and proposals about the domain (cf. Figure 5);

e A set of current discourse goals representing phases and objectives in the TRAINS
conversation (including getting a domain goal and agreeing upon a plan to satisfy the

goal);
o A set of intended speech acts that the system will say when it gets a chance;

e A set of pending discourse obligations.

In a conversational setting, an accepted offer or a promise will incur an obligation.
Also, a command or request by the other party will bring about an obligation to perform
the requested action. If the obligation involves speaking, then we call this a discourse
obligation. Our model of obligation is very simple and is based on a set of rules that
encode discourse conventions. Whenever a new conversation act is determined to have been
performed, any future action that can be inferred from the conventional rules becomes an
obligation. We use a simple forward chaining technique to introduce obligations.

When deciding what to do next, the DM first considers obligations and decides how to
update the intentional structure (add new goals or intentions) based on these obligations. If
there are no obligations, then it will consider its intentions and perform any actions which it
can to satisfy these intentions. If there are no performable intentions, then it will deliberate
on its overall goals and perhaps adopt some new intentions (which can then be performed
on the next iteration).

Special consideration must be given to the extra constraints that participation in a
conversation imposes. This includes some weak general obligations (such as acknowledging
utterances by others and not interrupting) as well as some extra goals coming from the
domain setting to maintain a shared view of the world and the domain plans which are to
be executed. To summarize this, the DM decides which task to perform at any given time
using the following priorities: :

1. Discourse obligations resulting from speech act effects (e.g., to address a request by
accepting or rejecting it).

2. A general obligation not to interrupt the other’s turn. Unless something is more
pressing, the system will wait rather than interrupt when the manager has the turn.

3. Intended speech acts. When the system has the turn and doesn’t have any pend-
ing discourse obligations, it will perform acts which have been planned but not yet
generated.

4. A general obligation to ground expressed content (i.e., coordinate shared beliefs):
Given that the system has the turn and has no obligations or speech acts it intends
to perform, it should acknowledge utterances that have not been acknowledged, or
request acknowledgment or repair its own utterances which have so far been ignored.
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Discourse Obligations none

Turn Holder System

Intended Speech Acts none

Unacknowledged Speech Acts | INFORM-1 (need to get oranges to Bath)
SUGGEST-4 (goal is to ship oranges)
Unaccepted Proposals none

Discourse Goals Get-goal, Build-Plan, Execute-Plan

Figure 19: The discourse state after interpreting utterance 1.1

5. Discoursegoals of domain plan negotiation. Given no higher priority goals, the system
will address unsettled suggestions (e.g., accepting or rejecting proposals made by the
manager or making new proposals or requesting acceptance of proposals previously
made by the system).

6. High-level Discourse Goals. Given no higher priority items, the system will attempt
to further the conversation, e.g., by calling the domain plan reasoner to expand the
domain plan (in the system’s private plan context), which will then provide the content
for future system proposals.

The updating of the conversational state upon perceiving conversation acts progresses
asynchronously with the other operations of the DM. Whenever the DM is active, it will
first decide on which task to attempt, according to the priorities given above, and then work
on that task. After completing a particular task, it will then run through the loop again,
searching for the next task, although by then the context may have changed, say by the
observation of a new utterance. The DM is always running and decides at each iteration
whether to speak or not (according to turn-taking conventions); it does not need to wait
until an utterance is observed, and need not respond to utterances in a strict utterance by
utterance fashion.

As an example, consider the functioning of the DM when handling the first few utter-
ances in the dialogue in Figure 10. Utterance 1.1, “We better ship a boxcar of oranges
to Bath by 8 AM,” is interpreted as performing two core speech acts. It is interpreted
(literally) as the initiation of an inform about an obligation to perform a domain action
(shipping the oranges). It is also seen as the initiation of an (indirect) suggestion that this
action be the goal of a shared domain plan. The discourse state after interpretation of this
utterance is shown as Figure 19. The system decides to acknowledge this utterance—moving
the suggestion from an unacknowledged state to a proposed state—and then to accept the
proposal, making it shared. The system acts on these intentions and produces the combined
acknowledgment and acceptance in utterance 2.1, “OK.” This makes the goal shared and
also satisfies the first of the discourse goals, that of agreeing to a common goal.

Utterances 3.1, “So we need to get a boxcar to Corning, where there are oranges,”
and 3.2, “There are oranges at Corning,” are interpreted in a similar manner, but not
responded to yet since the manager keeps the turn (in this case by following up with
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Discourse Obligations CHECK-IF (oranges are at Corning)

Turn Holder System

Intended Speech Acts Acknowledge INFORM-7 (need to get an engine
to Corning)

Unacknowledged Speech Acts | none

Unaccepted Proposals SUGGEST-10 (subgoal to get engine to
Corning),
SUGGEST-15 (use the oranges at Corning)
Discourse Goals Build-Plan, Execute-Plan

Figure 20: The discourse state after utterance 3.3

subsequent utterances before the system has a chance to act). Utterance 3.3, “Right?”
creates a discourse obligation on the system to respond to the Manager’s assertion in 3.2
and also gives the turn to the system. The resulting discourse context after the system
decides to acknowledge is shown in Figure 20. The system then proceeds to address the
discourse obligation. It queries the knowledge base and decides that the manager is correct
here (there are, indeed, oranges at Corning), and so decides to meet this obligation by
answering in the affirmative. This results in forming an intention to inform, which is then
realized (along with the acknowledgment of the utterances) by the production of utterance
4.1. More detail on the dialogue manager is available in [Traum and Allen, 1994].

6.7 The Domain Plan Reasoner

The domain plan reasoner allows the system to reason about the TRAINS domain. To
support language understanding, it provides an algorithm (incorporation) that attempts to
find causal and motivational connections between potential interpretations of the current
utterance and the current plan. It also provides a planning capability (the elaboration
algorithm), which is used to drive the system’s own reasoning about the plan, and provides
a question answering facility about the current plan and the state of the world. The domain
planner provides reasoning services on demand. When given a task or query together with
a plan object as the context, it supplies back the appropriate analysis for that task. These
results can then be added to the appropriate context by the caller.

First consider the incorporation task. This subsumes what is typically called plan recog-
nition in the literature, While plan recognition systems generally handle only atomic actions
as input, the TRAINS plan incorporation algorithm handles a wide range of phenomena, all
of which arise in the TRAINS dialogues. In particular, it has to be able to interpret the
following:

e Utterances that suggest courses of action, e.g., “Send engine E3 to Dansville.” This
is the typical case studied in the plan recognition literature.
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e Utterances that identify relevant objects to use, e.g., “Let’s use engine E3” and
“There’s an OJ factory at Dansville.” The second sentence is an indirect sugges-
tion to use the OJ factory.

e Utterances that identify relevant constraints, e.g., “We must get the oranges there by
3 PM” and “Engine E2 cannot pull more than 3 carloads at a time.”

e Utterances that identify relevant lines of inference, e.g., “The car will be there because
it is attached to engine E1.”

e Utterances that identify goals of the plan, e.g., “We have to make 0J.”

e Utterances that introduce complex relations, e.g., purpose clauses such as “Use E3 to
pick up the car” and “Send engine E3 to Dansville to pick up the oranges.”

All of these affect the plan being discussed in some way, and finding the appropriate con-
nection is crucial to understanding the intended meaning of the utterance.

To account for these interpretations, we must take a more general view of the plans
than is typically found in the planning literature. In particular, our plan structures must
be able to represent the motivations for actions and explanations for why a certain action
will have the desired effect. To capture this, we have formalized a notion of plan graphs,
which represent defeasible arguments that the planned actions will accomplish the declared
goals. An example of a plan graph was shown in Figure 9. Formally, a plan graph is a graph
consisting of nodes labeled by propositions in a temporal logic (in the case of TRAINS, with
EBTL formulas). There are two classes of nodes: those that describe events (including
action occurrences) and those that describe states. The link types correspond roughly to
an intuitive classification of the possible relations between events and states: effect (action
to state), enablement (state to action), generation (event to event) and justification (state

to state).

We characterize plan reasoning as search through a space of plan graphs. The termi-
nation criterion for the search depends on the type of reasoning being done, as will be
described shortly. Since the plan graph formalism sanctions arbitrarily complex graphs
labeled with arbitrarily complex formulas, searching all possible plan graphs is impossible.
We therefore rely on additional properties of the underlying representation to restrict the

search.

First, we assume the ability to determine whether two objects (including events and
states) unify and to identify assumptions under which they would do so. Second, we assume
that events are defined using relations corresponding to enablers, effects, and generators. In
the temporal logic, these descriptions can be obtained from the event definition axioms. The -
search then only considers plan graphs that reflect the structure of the event definitions. We
call such plan graphs acceptable. In this respect, the search will only find plan graphs that
can be constructed from the “event library.” However, information returned from failed
searches can be used to guide the repair of apparent incompatibilities at the discourse level,
and the knowledge base can be augmented with a “bug library” to recognize common ways
in which plans fail.
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Incorporation of an event (or goal or fact) involves a search through a breadth-first
expansion of the plan graph. The plan reasoner first checks if the event is already present
in the plan. If so, the plan reasoner returns any equality assumptions that it had to make
to allow the match. Otherwise, it expands the plan by adding the decompositions of events
in the plan, and by following precondition and effect links. The search terminates when one
or more possible matches are found at one level, or some preset depth bound is exceeded,
in which case the domain reasoner gives up trying to find a connection. This reflects a
hypothesis that if the connection is not fairly obvious, the utterance has probably been
misinterpreted. If more than one possible connection is found at a level, the plan reasoner
returns the set of choices so that the DM might plan a clarification subdialogue or repair.

As an example, consider the fourth utterance in the TRAINS-91 dialogue, “Engine E3
is scheduled to arrive at 3PM.” After interpreting the first three utterances, the domain
reasoner has constructed plan (a) shown in Figure 21, which involves moving oranges from
city I to city B where they will be made into orange juice. To validate the suggest inter-
pretation, the plan reasoner must find a connection between this fact and the plan. The
arrival of engine E3 is not part of the current plan. Expanding the plan one step intro-
duces a Move-Car event to generate the existing Move-Oranges. Expanding one more step
introduces a Move-Engine action to generate the Move-Car event. A precondition of the
Move-Engine action is that the engine must be at city I (the originating city). This fact can
be established by the occurrence of the arrival action described in the utterance. Thus a
causal connection has been found between the utterance and the plan, summarized in plan
(b) in Figure 21. Because this connection is found, the interpretation of the utterance as a
suggestion to use engine E3 after it arrives to move the oranges is considered plausible.

After interpreting utterance 1.5, “Shall we ship the oranges,” the system has the turn
and attempts to elaborate the plan. Plan elaboration uses fairly traditional means-ends
planning to attempt to flesh out the plan. In so doing, it attempts to satisfy or assume
preconditions and bind roles to objects in order to generate a complete plan. It freely makes
consistent persistence assumptions by assuming inclusion of one unconstrained temporal
interval within another known one. It also ignores some details of the plan, for example the
exact route an engine should take. These can be reasoned about if necessary (e.g., if the
manager mentions them) but can otherwise be left for the execution planning stage. When
some choice is encountered that must be confirmed by the manager, the planner stops the
expansion of this part of the plan, and returns a goal of making the choice to the DM. For
example, Figure 22 show the plan after the elaboration, containing a variable for the car
to be used. The choice of car for transporting the oranges is important in the TRAINS-91
scenario because there is an empty car at Avon as well as one attached to E3. The plan
will differ depending on which car is used. Rather than deciding, the plan reasoner returns
a goal to resolve this ambiguity to the discourse module, which chooses one alternative and
proposes it, leading to utterance (2.2). ’

No previous plan reasoner has provided such a wide range of capabilities as the TRAINS
plan reasoner. Much of its power arises from its rich representational formalism, namely
the temporal logic of events and action, and the treatment of plans as argument structures.
The price we pay for this generality is a lack of the formal completeness and complexity
results for planning that can be obtained in more expressively limited formalisms and, of
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Figure 21: The plans after utterances (a) 1.3 and (b) 1.4 in the TRAINS-91 dialogue
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course, the difficulty in defining effective algorithms. But we do not see that there is a
choice here if one is to cover the range of reasoning needed to comprehend the dialogues.
We are currently working on methods of formalizing the plan reasoning process that may
allow us to construct some convergence proofs on the plan reasoning process: i.e., given
enough time, the plan would converge to a correct plan.

6.8 The Execution Planner

Once a plan has been agreed to by the system and the manager, the DM hands the plan to
the execution planner. The execution planner extracts all of the events specified in the plan
and looks for ways of making the necessary events occur. As mentioned earlier, the TRAINS
System cannot directly cause any of the events specified in the plan because it does not
have direct control of the trains, factories, or warehouses. Instead, it must request actions
of the agents can cause these events. For example, if the plan specified that oranges should
be loaded into a car at Avon and the car should be taken to Bath, it translates these two
events into requests to the supervisor of the warehouse at Avon to load oranges into a car
and to the engineer of the train connected to the car to drive to Bath.

The execution planner reasons about events at a different level of detail than does the
domain reasoner. For instance, instead of reasoning about moving the oranges, it reasons
about requests to the engineers and supervisors to move the oranges. Requests are in
the form of condition-action pairs that request the agent to perform the action when the
conditions become true. For example, in the TRAINS-91 scenario, the following message is
sent to the factory supervisor F1, at city B:

(((IN C1 01) (AT C1 CITYB)) (UNLOAD F1 C1))

This requests that when the oranges (01) are in the boxcar (C1) and the boxcar is at city B,
then the factory supervisor should unload the oranges. Besides having the agents perform
various domain actions such as unload, load, couple, and so on, the TRAINS system may
also request that an agent send back reports when certain conditions arise. The system
might, for instance, send another message with the one above that requests that when the
boxcar is unloaded, the supervisor should send back a report notifying the system. This
way, the system can keep track of whether or not its requested actions have succeeded.

The execution planner must reason about what events need to be explicitly addressed in
the requests. For instance, if it can request a TRAINS agent to execute actions to cause an
event E directly, it does not need to also make requests for the events in the decomposition
of E. If there are several different ways to accomplish some event, the execution planner
will choose the one that it has found to be most reliable in the past. It collects statistics on
~ the number of times requests result in reports that the requests were satisfied. Formally, it
deals with estimates of conditional probabilities of the form PROB(Occurs(E)|sent(M))
for each event E and message M. The estimates are computed from the ratios of the number
of times the event is reported to occur and the number of times the message is sent. In
any situation, the planner chooses the messages that maximize the expected probability of
success. Details on the actual formalism can be found in [Martin, 1993].

44




7 Other Issues

This section describes some additional issues of importance to the TRAINS project, but
which are not part of the actual system. Specifically, it describes the TRAINS simulator and
two additional projects addressing temporal reasoning and interpreting speech repairs.

7.1 The TRAINS Simulator

While not part of the TRAINS system per se, the TRAINS simulator is a crucial component
of the research project. It simulates the physical attributes of the TrRAINsS World as well
as the agents in this world. Unlike many other simulators, it explicitly models the actions
of agents, rather than treating an agent’s actions just like other simulated events. In the
TRrAINS Simulator, the actions of agents are asynchronous with respect to the events in the
simulator. Agents can perform actions at any time in the course of the simulation and their
actions cause cascades of events. The TRAINS Simulator provides a graphical interface that
can animate the execution of plans, making it easy to detect interactions between tasks
given to different agents.

By directly simulating agents, the simulator can model the exchange of information be-
tween agents. In particular, each simulated agent is capable of sending and receiving mes-
sages and acting in accordance with requests from the system. Agents obtain information
about their local situation by simulated perception actions. Given a set of condition-action
commands controlling its behavior, an agent continually perceives the state of its local area
of the world to check if a rule applies. When a rule applies, it executes the action. Be-
cause there are many agents, the simulator can model the execution of plans that require
decentralized execution.

The simulator is driven by a causal model of the world.® Every action by agents, as well
as external events that occur spontaneously, can have probabilistic effects. By allowing the
system designer to modify the causal model, it supports experiments in which the failure
rate of actions can be varied, and in which external events may occur that may interfere
with (or enhance) the likelihood that the current plan will succeed. The designer can also
vary the clock time, so as to support a range of experiments from real-time planning, which
requires a relatively slow clock rate, to automatic plan learning, which requires multiple
runs done as fast as possible.

The simulator is designed so that it is easy to add new types of objects. The new types
of objects can inherit properties from existing objects, such as speed and fuel capacity or
behaviors like that ability to move to another location or the ability to store commodities.
The current simulator supports railways, trucks, air transport and ships, each with their
own different constraints on routes and cargo capacities. It also supports different forms of
infrastructure: factories, ports, airports, warehouses, and so on.

8The causal model in the simulator is not accessible to the TRAINS system, as it is part of the external
world. The world model used by the TRAINS reasoning components is typically less precise, and may be
only a rough approximation of the actual model.




7.2 Temporal Reasoning

If TRAINS is ever to be scaled-up to realistic sized transportation problems, it must be able
to efficiently reason about large numbers of activities over extended periods of time. We
evaluated existing systems for temporal reasoning to see how well they scale up. The results
were disappointing. Interval reasoning systems like our own TIMELOGIC [Koomen, 1989,
which the current system uses, and MATS [Kautz and Ladkin, 1991], suffer from serious effi-
ciency problems once they have to handle about 500 intervals, and become unusable before
hitting 1000. Systéms using constraint-satisfaction techniques for point-based reasoning
fare better, but show degradation as the number of times enters into the thousands (see
[Yampratoom and Allen, 1993]). The goal of the TIMEGRAPH-II system was to provide a
temporal reasoning system that operated in close to linear time as the datasets grew.

As with all reasoning systems, there is an assert time/retrieval time tradeoff in comparing
algorithms. Most temporal reasoning systems use constraint propagation techniques and
compute out all consequences of information when it is asserted. This makes assertion
expensive (order n® for point-based logics), but yields a constant time retrieval algorithm.
The idea in TIMEGRAPH-II is not to compute all consequences and thus to sacrifice the
constant time retrieval. It turns out, however, that temporal databases for natural language
understanding and for planning have significant structure. Specifically, the times tend to be
organized into long ordered chains. TIMEGRAPH-II exploits this structure, and provides
constant time retrieval between times on the same chain, and a retrieval time proportional to
the number of chains for the rest. Qur empirical studies show that this is a substantial win
with large datasets of train schedule information. More information on the algorithm can
be found in {Gerevini and Schubert, 1993]. Extensions to deal with temporal disjointness,
such as those needed to express non-overlap between actions are reported in [Gerevini and
Schubert, 1994].

7.3 Speech Repairs

As mentioned earlier, one of the immediate problems facing a spoken dialogue system is
handling speech repairs. Such repairs can be classified into three groups: modification
repairs, where part of the earlier utterance is replaced with new material (e.g., “How far
is it from Avon to...from Corning to Dansville”), fresh starts, where the entire previous
utterance is discarded, and abridged repairs, which consist solely of word fragments and
filled pauses such as “um” and “uh.” For our initial work, we focused on modification
and abridged repairs, of which we annotated over 700 examples, using about a third of the
TRAINS dialogues.

In looking at the data, it seemed that most modification repairs could be detected and
corrected using only local information, without the aid of a parser. If this turned out to
be true, it would considerably simplify the processing of speech as the parser would not
need extensive modification to handle such phenomena. We found that most repairs are
signaled by one of a few factors: word fragments (i.e., a word is started but never finished),
the presence of editing terms (e.g., “um,” “let’s see,” ...), and the repetition of words. Of
course, there are also prosodic signals of repairs (e.g., see [Nakatani and Hirschberg, 1993]),
but it is not yet possible to extract such information reliably from the speech signal. So
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we worked solely from the information that is present in the transcripts. The technique we
used involved two phases:

o prediction: a generalized pattern matching procedure which identifies potential re-
pair sites by looking for word fragments, editing terms, and various forms of word
repetition, and uses well-formedness constraints to filter out implausible repairs.

e verification: a statistical model, essentially a part-of-speech tagger augmented with
information about repairs and repair signals, was used to weed out false positives.

This model is trained on part of our corpus of annotated speech errors in the TRAINS corpus.

The model worked much better than we expected. On a fair test on repairs in the TRAINS
data that were not used for training, 80% of the repairs were detected and correctly made.
Another 3% were detected but not corrected properly. The false positive rate was quite low,
and the test results produced a detection accuracy figure of 89%. There is only space for
one example, which shows that the algorithm works on a sentence that contains a sequence
of overlapping repairs, a quite common phenomena. The input to the algorithm was

...and pick up um the en- I guess the entire um p- pick up the load of oranges
at Corning

and the corrected output was
...and pick up the load of oranges at Corning

More details on this work can be found in [Heeman and Allen, 1994].

8 Discussion

It has been a large effort over several years to build the TRAINS systems. Was it worth
it? As far as the goal of providing a research platform for research is concerned, it has
been well worth the effort. Besides supporting many smaller-scale projects and investiga-
tions, the TRAINS project has provided the environment for five Ph.D. theses: Nat Martin
(execution planning and monitoring), Massimo Poesio (deindexing, i.e., reference resolu-
tion and scoping), and David Traum (the dialogue manager and discourse model), George
Ferguson (domain reasoning, i.e., interactive plan recognition and construction), and Marc
Light (deriving the meaning of unknown words from their morphological structure). The
system allowed these theses to explore different problems in depth but in the context of an
overall system. As a result, we know that the simplifying assumptions made in each thesis
are realistic assumptions to make. Many of the contributions described in this paper have
resulted from these works.

As a demonstration system, the success of TRAINS depends on what you are concerned
with. The system did demonstrate the feasibility of constructing a large-scale natural lan-
guage system that is tightly integrated with a collaborative plan reasoning system, and
showed how a wide range of different processing techniques (parser, reference resolution,
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discourse structure and plan reasoning) can be integrated. And many of the individual
components demonstrate significant depth in their area of concern. But the fact remains
that you cannot sit down in front of the system and spontaneously use it to solve a problem.
The system is simply not robust enough. One factor in this is certainly the lack of resources
to extensively test and debug the entire system over a wide range of dialogues. But the
issue runs deeper than that. Even if the system were extensively debugged and tested on a
wide range of dialogues, it would still perform poorly because it lacks any form of intelligent
recovery when given an input it cannot fully understand. Given the nature of spontaneous
dialogue, it is virtually certain that at least one utterance will be uninterpretable in almost
any reasonable sized dialogue. In fact, this problem arises with human-human dialogue
as well, except that humans use sophisticated methods to recover: by clarification subdia-
logues, requesting rephrasing, or simply ignoring what was not understood yet continuing
with the task. ’

The current TRAINS system lacks a model of its own behavior. As a result, it cannot
represent or reason about the fact that the last utterance could not be parsed, and so has no
reasonable mechanism available to it to handle such situations. In fact, the current system
simply ignores any unparsable input. It is not able to extract a partial understanding of what
was said because the current parsing process is an all or nothing process. Similar problems
of brittleness in message understanding systems or spoken language query systems have led
to the development of different techniques for partial, robust understanding. It is clear that
the TRAINS system needs to have such abilities. But such “shallow” understanding is not
enough. Handling interactions in the TRAINS domain often requires a deep understanding
of what is said in order to identify the implications of what has been suggested. Thus
we need to retain full parsing and interpretation whenever possible. To handle this, the
next versions of the TRAINS system will eventually run several understanding processes in
parallel and then adjudicate between the answers when conflicting results are found. The
system will also maintain an explicit model of its own actions, so that it can plan and
participate in effective clarification subdialogues.

The other obvious issue is extending the system to handle speech input. The system was
designed with a spoken dialogue in mind, but the input so far has been via the keyboard.
Recent progress in speech recognition systems makes it feasible for us to start exploring
this area. Our results on automatically handling speech repairs should help with one of the
difficult problems in moving to speech, but there are many other issues beyond the obvious
one of dealing with recognition errors that will greatly affect the system. First, spoken input
will tend to be much more incremental, with information coming in a phrase at a time, and
with sentence boundaries often not clearly marked (nor do they often seem relevant). Also,
there are cases where the system should respond (say acknowledging that it understands a
referring phrase) before the entire utterance has been produced. So the entire system must
be modified to handle incremental understanding all the way through.

When viewing the system as a planning assistant rather than a natural language system,
there are additional conclusions and concerns. First, on the positive side, the plan reasoning
capability of alternately performing plan incorporation and plan elaboration is necessary
for supporting mixed-initiative planning. Such a system has the potential to allow the
human and system to best exploit their own strengths: the humans can use their expertise
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at making high-level decisions about the best strategy to search for solutions, whereas the
system can use its capabilities to do detailed evaluation of plans, and to schedule large
numbers of interrelated events. On the negative side, it seems clear that a natural language
is not always the best medium for communicating all information about plans. We realized
this from the start of the project, and the shared map was a way to delay dealing with this
problem in the initial years of the project. To handle more complex plans and scenarios,
however, it is clear that the system must be able to plan map displays and illustrative
_charts and graphs in addition to natural language, and that the manager is going to want
a capability to point to parts of the map and to use a graphical user interface (GUI) for
specifying and exploring plans. While this seems like a major change in direction, in fact the
discourse and planning aspects of the system are well suited to these forms of interaction.
Since display events and mouse gestures are forms of communication, they can be formulated
as speech acts and planned in much the same way as planning speech acts realized by
natural language utterances. One goal of the next TRAINS system is to demonstrate this
by extending the system 1/O capabilities to include a graphical user interface.

We should mention that we don’t expect the natural language to be superseded by the
GUI. There are many tasks for which natural language is most efficient, especially when
discussing general problem solving strategies, performing clarifications, and in explaining
and answering questions about plans. In addition, in applications where the user is a novice
in using the system, the natural language interface provides an easily accessible channel for
the user to start interacting and learn about the capabilities of the system as a whole.

The TRAINS domain has proved to be remarkably flexible, supporting work in a wide
range of areas in natural language understanding and reasoning about plans. It provides an
excellent testbed for studying complex dialogue behavior even with quite small and simple
scenarios. On the other hand, scenarios can easily be expanded so as to challenge the best
planning algorithms. So not only can we demonstrate results in the domain in the short
term, there is no danger that this domain will become too simple or trivial in the foreseeable
future.

The TRAINS project has been and will continue to be a valuable scientific exercise. It
supports and encourages the development of theories that advance the state of the art
in natural language processing, intelligent agent architectures, and reasoning about plans,
among other areas. But as importantly, the requirement that the theories result in an
implemented system provides concrete feedback on the theoretical work and produces data
that can be used to guide future development. We believe that our work to date has laid a
solid and broad theoretical foundation on which to build future generations of conversational
and collaborative planning systems.
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